Higher Koszul Brackets on the Cotangent Complex
نویسندگان
چکیده
Let $n\ge 1$ and $A$ be a commutative algebra of the form $\boldsymbol k[x_1,x_2,\dots, x_n]/I$ where k$ is field characteristic $0$ $I\subseteq \boldsymbol x_n]$ an ideal. Assume that there Poisson bracket $\{\:,\:\}$ on $S$ such $\{I,S\}\subseteq I$ let us denote induced by as well. It well-known $[\mathrm d x_i,\mathrm x_j]:=\mathrm d\{x_i,x_j\}$ defines Lie $A$-module $\Omega_{A|\boldsymbol k}$ K\"ahler differentials making $(A,\Omega_{A|\boldsymbol k})$ Lie-Rinehart pair. Recall regular if only projective $A$-module. If not regular, cotangent complex $\mathbb L_{A|\boldsymbol may serve replacement for k}$. We prove structure $L_\infty$-algebroid k}$, compatible with pair k})$. The actually comes from $P_\infty$-algebra resolvent morphism $k[x_1,x_2,\dots, x_n]\to A$. identify examples when this simplifies to dg algebroid. For aesthetic reasons we concentrate cases $ carries (possibly nonstandard) Z_{\ge 0}$-grading both $I$ are homogeneous.
منابع مشابه
The logarithmic cotangent complex
We define the cotangent complex of a morphism of fine log schemes, prove that it is functorial, and construct under certain restrictions a transitivity triangle. We also discuss its relationship with deformation theory.
متن کاملTHE COTANGENT COMPLEX Contents
Contents 1. Introduction 1 2. Advice for the reader 2 3. The cotangent complex of a ring map 2 4. Simplicial resolutions and derived lower shriek 3 5. Constructing a resolution 6 6. Functoriality 11 7. The fundamental triangle 13 8. Localization andétale ring maps 17 9. Smooth ring maps 19 10. Comparison with the naive cotangent complex 19 11. A spectral sequence of Quillen 21 12. Comparison wi...
متن کاملThe Cotangent Complex
08P5 Contents 1. Introduction 1 2. Advice for the reader 2 3. The cotangent complex of a ring map 2 4. Simplicial resolutions and derived lower shriek 3 5. Constructing a resolution 6 6. Functoriality 11 7. The fundamental triangle 13 8. Localization andétale ring maps 17 9. Smooth ring maps 19 10. Comparison with the naive cotangent complex 19 11. A spectral sequence of Quillen 21 12. Comparis...
متن کاملAlmost Complex Structures on the Cotangent Bundle
We construct some lift of an almost complex structure to the cotangent bundle, using a connection on the base manifold. This unifies the complete lift defined by I.Satô and the horizontal lift introduced by S.Ishihara and K.Yano. We study some geometric properties of this lift and its compatibility with symplectic forms on the cotangent bundle.
متن کاملTHE COTANGENT COMPLEX Contents
Contents 1. Introduction 1 2. Advice for the reader 2 3. The cotangent complex of a ring map 2 4. Simplicial resolutions and derived lower shriek 3 5. Constructing a resolution 6 6. Functoriality 11 7. The fundamental triangle 13 8. Localization andétale ring maps 17 9. Smooth ring maps 19 10. Comparison with the naive cotangent complex 19 11. A spectral sequence of Quillen 21 12. Comparison wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2022
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnac170